论文研究一种具有自我更新机制的量子粒子群优化算法.pdf
自然界中生命体都存在着有限的生命周期,随着时间的推移生命体会出现老化并死亡的现象,这种老化机制对于生命群体进化并保持多样性有重要影响。针对量子行为粒子群(QPSO)算法中粒子存在老化并使得算法存在早熟收敛的现象,将生命体的自我更新机制引入了QPSO算法,在粒子群体进化中提出领导者粒子和挑战者粒子,随着群体粒子的老化,当领导者粒子领导力耗尽不能引导群体进化时,挑战者粒子通过竞争更新机制成为新的领导者粒子引导群体进化并保持群体多样性,并证明了算法的全局收敛性。将提出的算法与多种典型改进QPSO算法通过12个CEC2005benchmark测试函数进行比较,对结果进行了分析。仿真结果显示,该算法具
暂无评论