传统的目标检测识别方法难以适应海量高分辨率遥感影像数据,需要寻求一种能够自动从海量影像数据中学习最有效特征的方法,充分复挖掘数据之间的关联。本文针对海量高分辨率遥感影像数据下典型目标的检测识别,提出一种分层的深度学习模型,通过设定特定意义的分层方法建立目标语义表征及上下文约束表征,以实现高精度目标检测。通过对高分遥感影像目标检测的试验,证明了该方法的有效性。