文中介绍了一种全局随机优化算法—粒子群优化算法,并将其应用于BP网络模型的参数优化。在基本BP算法的误差反向传播调整权值的基础上,引入粒子群算法(PSO)进行权值修正,建立一个PSO优化的BP网络模型进行GPS高程拟合,并与基于遗传算法优化的BP网络模型(GA-BP)、支持向量机模型(SVM)和基本BP网络模型的拟合结果进行分析比较。结果表明,PSO-BP网络优化模型性能略高于GA-BP网络模型的性能,明显优于SVM模型和BP网络模型。