为了有效地解决人工蜂群算法容易陷入局部最优的缺陷,提出了一种改进蜂群算法。利用反向学习方法构建初始种群,以提高初始化解的质量。同时,利用分布估计算法构造优秀个体解空间的概率模型来进行邻域搜索,以改善算法的搜索性能并防止陷入局部最优。对连续空间优化问题进行了仿真实验,结果表明改进算法具有较快的收敛速度,全局寻优能力显著提高。