非几何字符串和M理论背景下的非缔合性八进制的代数和缺少的动量模式
我们基于八元的非缔合代数,为具有局部非几何通量的M-理论背景提出了一种非缔合相空间代数。 我们的建议是基于这样的观察:弦理论中非几何R-磁通背景的非缔合代数可以通过虚构张调产生的简单Malcev代数的适当收缩来获得。 此外,通过研究与扭曲圆环成对的四维局部非几何M理论背景的玩具模型,我们证明了非几何背景“缺少”动量模式。 由此产生的七维相空间可以自然地用假想的张量识别。 这使我们能够将虚构小调的完整非压缩代数解释为弦理论R-磁通代数向M理论的提升,而收缩参数起着弦耦合常数g s的作用。
暂无评论