论文研究-基于EEMD和进化KPCR的复杂时间序列自适应预测建模.pdf,  针对具有非线性、非平稳、多尺度特性的复杂时间序列, 提出一种基于集合经验模态分解(EEMD) 和进化核主成分回归(KPCR)的自适应预测建模方法. 首先运用能克服传统EMD算法中模态混叠现 象的EEMD算法, 按原始时间序列信号的构成特点将其分解到不同尺度, 然后对不同尺度序列采用 C-C方法重构相空间, 在相空间