针对如何提高煤矿主通风机故障诊断的准确率的问题,提出了一种基于集合经验模态分解(EEMD)和支持向量机(SVM)的风机故障诊断模型。该模型通过分解振动信号得到模态函数,提取能量熵作为故障诊断的特征值,使用粒子群优化算法(PSO)优化过的支持向量机模型诊断故障,其准确率已从87.5%上升到98.75%,实验表明,该模型的故障诊断正确率比较理想。