针对工作面瓦斯涌出量的影响因素众多且难以筛选的问题,提出了基于因子分析法与BP神经网络的工作面瓦斯涌出量预测方法。首先运用因子分析法对矿井瓦斯涌出量的影响因素降维处理,并筛选出3个主因子作为BP神经网络的输入端神经元,然后构建出基于BP神经网络的工作面瓦斯涌出量预测模型,并进行网络训练,最后对预测模型的可靠性进行检验。结果表明:因子分析处理后变量作用在影响因子上的权重得到了重新分配,并且变量的维数得以减少,错综复杂的变量关系被优化成3个主因子之间的线性组合关系,使得BP神经网络模型预测的瓦斯涌出量结果更合理,精度更高;工作面瓦斯涌出量预测值与实测值的相对误差均在5%以下,平均相对误差为3.25