基于GASVM的矿井涌水量预测
矿井涌水量的准确预测对预防矿山透水事故的发生至关重要,提出利用GA优化的SVM模型(GA-SVM)来实现矿井涌水量的短期准确预测。该方法利用GA的自动寻优功能寻找SVM的最佳参数,提高了预测的准确率。首先,利用微熵率法求矿井涌水量时间序列的最佳嵌入维数和延迟时间,进行相空间重构。其次,采集义煤集团千秋煤矿2011—2015年实际涌水量的时间序列,利用GA-SVM模型对最后12组数据进行预测,其预测平均绝对百分比误差仅为0.92%,最大相对误差为2.62%。最后,与PSO-SVM和BP神经网络预测进行对比,结果表明GA-SVM优化模型适用于矿井涌水量的预测并且预测精度较高。
暂无评论