提出了一种改进的分布式极限学习机的电站锅炉NO_x排放特性建模方法。引入分布式和岭回归理论,提升了极限学习机预测算法的泛化性能和预测准确率。采用改进的MapReduce编程框架对提出的算法模型进行并行化改进,提高其处理大数据的能力。选用某660 MW电站锅炉提供的真实运行数据进行分析,并在Hadoop集群上进行实验,结果表明该模型对NO_x排放有着较好的拟合和预测能力,且提出的算法具有优异的并行性能。