论文研究 基于机器学习的组合模型预测阿尔茨海默氏病
随着人口老龄化趋势的加快,建立预测阿尔茨海默氏病(AD)的模型至关重要。 在本文中,我们对1157名受访者进行了调查。 通过使用三种机器学习方法(BP神经网络,SVM和随机森林)分析结果,我们可以得出它们在AD预测中的准确性,以便我们可以比较解决AD预测的方法。 其中,随机森林是最准确的方法。 此外,为了结合这些方法的优势,我们基于这三种机器学习模型构建了一个新的组合预测模型,事实证明,该模型比单独的模型更准确。 最后,我们总结了生活方式与AD之间的联系,并为老年人提供了一些建议,以帮助他们预防AD。
暂无评论