暂无评论
为了解决标准粒子群优化算法容易陷入局部极小值的问题,模拟统计物理和热力学中的扩散现象,设计了一种扩散机制,根据扩散定律和扩散系数公式,给出了粒子的扩散能、种群的温度和粒子的扩散概率三个定义和扩散池的概
针对动态系统目标跟踪问题,RBPF算法通过将高维状态空间分解成易于处理的线性子部分与非线性子部分,并采取不同策略进行滤波估计。为了提高RBPF的计算效率,提出将粒子群优化思想融入到RBPF滤波估计中,
提出一种混合粒子群优化算法用于求解约束优化问题。新算法的主要特点是:在搜索机制方面,利用混沌初始化种群以提高初始群体的质量。为了扩大粒子的搜索范围,引入柯西变异算子。利用单形交叉算子对种群进行局部搜索
为了避免粒子群优化算法(PSO)早熟收敛,提出了一种自适应扰动的PSO算法(ADPSO),以帮助停滞的粒子跳出局部最优。为了验证算法的有效性,实验测试了九个多峰函数,包括四个旋转函数。仿真结果表明,该
提出Vague集(值)之间的新相似度量,给出一个区间值数据向Vague值数据的转化公式。农业领域的应用实例进一步表明这些公式是实用的。
为了提高粒子群优化(PSO)算法的优化性能,提出了一种多策略协同进化PSO(MSCPSO)算法。该方法引入了多策略进化模式和多子群协同进化机制,将整个种群划分为多个子群,每个子群中的粒子按照不同的进化
提出了一种基于种群熵的多粒子群协同优化算法,通过引入熵对种群粒子的分布性进行度量,然后利用它来引导在多种群协同演化中粒子迁徙的时间和方向,从而保持粒子在寻优过程中的多样性和快速性。通过四个典型测试函数
为了解决标准粒子群优化算法(particleswarmoptimization,PSO)收敛速度慢和容易陷入局部极小值的问题,提出了一种改进的方法。算法针对PSO算法在搜索过程中常处于一个相对稳定的阶
多目标最优化的混合粒子群算法,马金玲,唐普英,论文提出了一种基于拥挤度和动态惯性权重聚合的多目标粒子群优化算法,该算法采用Pareto支配关系来更新粒子的个体最优值,用外部存
基于改进粒子群优化算法的手势跟踪,王霞,夏海轮,针对优化算法在高维人手参数空间中求解复杂的目标函数时出现的局部搜索能力不足、早熟收敛和精度低等问题,本文提出一种基于自适
暂无评论