针对连续属性朴素贝叶斯分类器不能有效利用属性之间的条件依赖信息、而对其进行依赖扩展中的高阶协方差矩阵的求逆和行列式运算又非常困难等问题,将三对角矩阵和多元高斯函数相结合,建立连续属性完全贝叶斯分类器,并在三对角矩阵中引入平滑参数,通过对平滑参数的调整来实现分类器的优化。使用UCI数据的实验结果显示,经过优化的连续属性完全贝叶斯分类器具有良好的分类准确性。