该文提出一种经验模态分解(empirical modedecomposition,EMD)–样本熵(sample entropy,SE)和极端学习机(extreme learning machine,ELM)相结合的风电功率超短期预测方法。该方法首先利用EMD-SE 将风电功率时间序列分解为一系列复杂度差异明显的风电子序列;其次利用最小二乘支持向量机(least squares support vector machine,LSSVM) 、极端学习机和经原始岭回归(primal ridge regression,PRR)改进的极端学习机(PRR-ELM)对各子序列建立组合预测模型,并采用交叉验