KdV-mKdV方程是发现最早且最具代表性的非线性发展方程,在数学、物理、工程等领域,都有十分重要的应用前景.近些年来,对它的精确解的求解问题的研究不断增多.采用双曲正切函数展开法和推广的tanh法,对KdV-mKdV方程构造并分别求解,得到一些新的精确解.这种方法也可进一步推广用于求解其他非线性偏微分方程.另外,精确解的获得可为近似计算、定理分析等现实问题提供基础.