针对支持向量机在故障诊断中参数的选取问题,提出一种改进的粒子群优化算法,对支持向量机的惩罚因子与核参数进行优化。为了克服传统粒子群算法前期收敛快、后期易陷入局部最优的缺陷,提出一种惯性权重自适应调整的粒子群优化算法,建立基于粒子群和支持向量的通风机故障诊断模型,通过样本数据对模型进行训练与测试,实现了通风机故障的识别,结果表明该模型对通风机故障的诊断是可靠的。