为了克服传统协同过滤推荐技术的局限,提出了一种基于CTM-PMF模型的物品推荐方法。在PMF模型的基础上,引入CTM模型,将PMF模型良好的推荐品质和CTM模型优越的物品表示方法相结合,有效地实现了新物品推荐;通过引入用户兴趣因子,解决了用户对已购买物品的兴趣变化问题。在自建的物品数据集上,利用提出的方法、PMF模型、G-PLSA模型和UBCF方法进行了对比实验,实验结果表明该方法具有良好的物品推荐品质。