暂无评论
传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚
已有的混沌粒子群算法多使用Logistic混沌映射,但Logistic混沌映射产生的混沌序列不够均匀,影响了混沌粒子群算法的性能。提出在混沌粒子群算法中引入均匀性更好的An混沌映射,利用An混沌映射初
针对粒子群优化算法容易出现早熟收敛和稳定性低的现象,提出一种自适应调节的粒子群算法。算法中通过自适应调节适应度值的均匀分布保持种群的多样性,该策略能够提高算法的全局搜索能力,同时可避免阈值对算法稳定性
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,
提出一种自适应动态重组粒子群优化算法. 该算法采用凝聚的层次聚类算法, 将种群分成若干个子群体, 用一个精英集对非支配解进行存储; 根据贡献度和多样性, 对各子群体的粒子和整个种群进行自适应动态重组;
基于量子粒子群算法的混沌系统参数辨识.pdf 高清
研究了基于最大互信息的图像配准算法,在图像配准中引入了新的相似性测度,在分析具有量子行为的粒子群优化算法基础上,将量子粒子群算法作为优化策略用于图像配准并与Powell算法和PSO算法进行了仿真比较,
针对用BaumWelch算法训练隐马尔可夫模型用于序列比对算法的搜索空间有限性容易陷入局部最优点的缺陷,提出一种用量子粒子群优化算法训练隐马尔可夫模型的生物多序列比对新方法。该方法克服了BaumW
双向聚类已成为分析基因表达数据的一种重要工具,可以同时从基因和条件两个方向寻找具有相同表达波动的簇。但双向聚类是一种多目标优化的局部搜索算法,处理繁杂的基因数据时容易陷入局部最优。为提高算法的全局搜索
传统的粒子群算法训练神经网络的水质评价模型有学习速度慢,容易陷入局部最优和精确性不高的缺点。为了克服模型的缺点,提出了利用改进的自适应量子粒子群算法训练T-S模糊神经网络的新模型,新的自适应量子粒子群
暂无评论