暂无评论
提出了一种改进的带源节点的CNM快速社区发现算法,用于含有部分已知社区属性节点的复杂网络的社区结构划分。算法中将这部分节点作为源节点,采用模块度增量最大化为目标函数对待划分节点进行聚合,并在取得最大全
模式树是目前频繁项集挖掘最常用的数据结构,使用模式树可以有效地将数据库压缩于内存,并在内存中完成对频繁项集的挖掘。为了进一步提高频繁项集挖掘算法的可扩展性,本文对模式树进行了细致的研究,在此基础上提出
提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCF
基于完全图的局部扩展类重叠社区发现算法,赵亮,朱征宇,根据复杂网络完全图中节点属于同一社区的特点,提出一种基于完全图的重叠社区发现算法。该算法通过K-核分解算法找出核心节点,以�
针对目前多层社会网络(multi-layered social network,MSN)的社团发现算法较少、社团划分结果较粗糙等特点,提出了一种基于边聚类的多层社会网络社团发现(CLEDCC)算法。该
结合XML文档的特点,采用XML数据模型XOEM和压缩结构树的存储结构,提出了一种高效的XML数据的频繁模式挖掘算法──AFPMX算法,并从理论和实验两方面证明了该算法是可行和有效的。
利用有向项集图来存储事务数据库中有关频繁项集的信息,提出了有向项集图的三叉链表式存储结构和基于有向项集图的最大频繁项集挖掘算法。它不仅实现了事务数据库的一次扫描,减少了I/O代价,而且可以同时解决好稀
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种挖掘最大频繁模式的快速算法,该算法利用前缀树压缩存放数据,并通过调整前缀树中节点信息和节点链直接在前缀树上采用深度优先的策略进行挖掘,而不需要创
在FP_growth算法中,FP_tree及条件FP_tree的构造和遍历占了算法绝大部分的时间,为了能减少这方面的时间,提出了一种新型快速的方法——改进的层次频繁模式树(inprovedhierar
高效权重树快速挖掘频繁网页集的方法,朱征宇,徐强,为了了解用户访问行为,从web日志中挖掘频繁页面集已经成为了网络应用挖掘中迫在眉睫的需求。尽管原始的T 权重树算法(T weight tree
暂无评论