暂无评论
贝叶斯动态模型及其预测。介绍贝叶斯的一些概念和用法。
介绍了贝叶斯潜在动态因子的模型估计方法,写出了参数和因子的具体后验分布以及吉布斯抽样的原理。
BayesianNonparametric,非参数贝叶斯模型
贝叶斯网络又称信度网络,是Bayes方法的扩展,目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已知成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Dire
论文研究-突发事件下基于贝叶斯更新的延迟生产策略.pdf, 基于突发事件对多区域影响的不确定性导致应急物资生产策略和产量
论文研究-扩展的树增强朴素贝叶斯网络信用评估模型.pdf,
由于贝叶斯模型和各种图像测量结果,置信传播会更新每个节点的相关概率,提出了在自动交互图像分割过程中应用的新型贝叶斯网络模型。从过度分割模型中的超级像素点区域、边区域、顶点和测量结果之间的统计相关性来构
针对传统朴素贝叶斯算法对高维复杂的入侵行为检测效率低下的状况,提出一种基于粒子群的加权朴素贝叶斯入侵检测模型。模型首先用粗糙集理论对样本属性特征集进行约简,再利用改进的粒子群算法优化加权朴素贝叶斯算法
针对当前可靠性预测模型的预测精度问题,提出一种增强贝叶斯组合的短期软件可靠性预测模型。该模型以基于小波分解的单个可靠性预测模型作为基本预测模型,根据当前相邻几个失效时间间隔的预测精度,更新组合模型中各
对语音识别进行了探讨,提出一种通过性别识别对连续隐马尔可夫模型(CHMM)分类的方法,在此基础上进行语音识别。首先,通过计算性别判定语音信号的Mel频率倒谱系数(MFCC)使用CHMM对说话人性别进行
暂无评论