提出利用模糊属性集和关联规则的支持度获得高效率的关联规则增量更新挖掘的方法。首先对输入数据集进行模糊离散化,确定相应的模糊属性集,模糊支持数和各属性原先的模糊聚类中心;然后检查是否满足最小支持度条件,将其添加到更新后的模糊频繁属性集集合中;最后比较模糊频繁属性集和负边界的变化,得到最终更新后的模糊频繁属性集和相应的关联规则。采用实际飞行数据验证了该算法可以避免反复和多层扫描数据库的时间消耗问题,模糊关联规则挖掘算法可以高效和准确提取增量关联规则。