基于分形和支持向量机矿井涌水量的预测
针对矿井涌水量预测问题,提出一种新的非线性预测方法。首先利用分形理论对矿井涌水量的时间序列进行相空间重构,应用自相关系数法确定最小嵌入维数,并以最小嵌入维数作为支持向量机的输入节点,根据支持向量机原理建立矿井涌水量的预测模型。将河南鹤壁四矿1982—1997年的矿井涌水量作为时间序列的训练样本,在Matlab环境下,利用所建立的预测模型预测不同嵌入维数时2000和2001年的矿井涌水量。结果表明:与其他维数相比,当嵌入维数为4时,井筒涌水量的预测值误差最小,预测精度最高。为检验该方法预测的可靠性,分别将不同维数下井筒、巷道和工作面涌水量1988—2001年的预测值与观测值进行对比,发现预测值与
暂无评论