针对多目标粒子群算法存在的问题,提出了一种可行性规则动态调整的多目标粒子群算法。在算法中,根据粒子之间的相似度值动态非线性地更新算法的惯性权重,使得算法可以高效地平衡全局和局部搜索之间的矛盾;采用动态加权法解决随机性抽取群体最优粒子的缺陷,保证了种群的多样性;并且动态改变可行性规则的阈值,使得算法可以有效地利用某些不可行解包含的有效信息,提高了算法收敛到Pareto前沿的能力。最后,与其他四种多目标算法的实验比较验证了新算法的性能更好。