协同过滤是目前推荐系统中最为成功的推荐技术,但传统的协同过滤算法没有考虑用户兴趣的变化。针对上述问题,从艾宾浩斯记忆遗忘规律得到启发,提出一种基于资源相似度的协同过滤算法,利用基于指数遗忘的数据权重来逐步减小资源相似度的权重。实验结果表明,该算法显著提高推荐系统的推荐质量。