随着高速网络的快速发展,如何在高速网络中快速有效地捕捉到异常的攻击特征,成为研究IDS所面临的首要问题。利用主成分分析技术的不同主成分互不相关和主成分是原始特征的线性组合的特性,有效地将高维特征向量映射到低维的空间中,既保持了原始数据的特征,又减少了高速网络环境下系统的丢包率,通过对KDD Cup99数据集进行实验,并运用BP神经网络分类器进行了验证,证明该方法是正确有效的。同时提出了数据管理功能模块,不但使算法与实际应用结合的更加紧密,而且也改善了入侵检测系统的整体性能。