暂无评论
采用小波阈值法对齿轮箱故障信号进行去噪预处理,将经验模式分解(EMD)和快速傅立叶变换(FFT)相结合对齿轮箱故障信号进行特征提取,这种方法适用于非线性非平稳信号的自适应状态分析。利用EMD方法将去噪
针对齿轮箱振动信号的非平稳和非线性特征,给出了一种基于经验模态分解(EMD)近似熵和双子支持向量机(TWSVM)的齿轮箱故障诊断方法。对不同类型的齿轮信号进行EMD分解,得到若干个具有不同时间尺度的本
Gearbox fault diagnosis system
针对齿轮箱故障振动信号的非平稳特征,提出一种基于Hilbert-Huang变换的齿轮箱故障诊断方法。使用Hilbert变换求重构信号的包络,采用EMD方法将包络信号分解为若干个IMF分量,再对IMF分
LabVIEW编辑的齿轮箱基本检测程序,可以实现包络分析,倒谱分析,频谱分析等功能
提出一种基于集合经验模态分解(EEMD)降噪与概率神经网络(PNN)的齿轮箱齿轮故障诊断方法:利用EEMD对采集到的齿轮振动信号进行分解,得到一系列固有模态函数(IMF),然后利用相关系数准则对IMF
针对信号经验模态分解(EMD)过程中存在波形混叠现象,提出一种基于聚合经验模态分解(EEMD)和Hilbert边际谱相结合的方法对齿轮箱故障进行故障诊断。首先使用小波阈值分析对背景噪声较大的齿轮箱振动
针对采煤机齿轮箱运行过程中很容易发生润滑不良或异常磨损等故障的问题,提出了一种基于偏最小二乘回归的采煤机齿轮箱故障诊断方法。选取采煤机齿轮箱内润滑油的铁元素含量、黏度、酸值和水分为检测指标,在对数据进
平行齿轮箱及行星齿轮箱是机械设备的重要传动部件,也是故障频发部件。基于实验分析,对比研究平行齿轮箱和行星齿轮箱局部故障的特征提取方法。应用Compact-RIO采集齿轮箱的实时振动信号,运用共振解调技
针对采煤机摇臂齿轮箱故障诊断的难题,提出了一种基于时频特征和PSO-SVM的故障诊断方法。考虑到SVM模型参数和故障特征对诊断结果有着重要的影响,提出了利用PSO对SVM参数进行优化,并同时选择最佳的
暂无评论