提出一种基于维基百科的领域实体发现方法,该方法将构成领域实体的典型字或词作为种子元素,利用少量种子元素作为实体发现的初始知识,有效地克服了传统方法在获取种子词条时过分依赖领域专家的局限,同时还利用维基百科词条中的分类信息,通过计算维基百科类与领域类间的隶属度实现领域实体的有效扩充。人工抽样对实体发现结果进行检验,平均准确率达到80%左右,同时还将构建出的领域实体知识应用到文本分类中,结果显示,当训练集具有一定规模时,以实体为特征的分类模型的准确率较以词为特征分类模型的准确率有显著提高,说明实体知识在实际应用中的有效性。提出的方法具有较好的领域独立性和语种独立性,可较为便捷地移植到其他语种与领域