针对传统WOA算法在迭代寻优前期因种群存在适应度相对较差个体并通过代间信息继承途径而影响新种群优良性与算法寻优性能的问题,提出一种将WOA算法与混沌搜索策略相融合的改进鲸群优化算法(MWOA).该算法在每代寻优过程中以个体适应度值的优劣作为判定准则以识别当前种群的最差个体,通过混沌映射对该最差个体进行位置更新以改善种群的优良性并提高算法的优化性能与寻优效率.实验结果表明,改进算法在基准测试函数实验表现出较强的探索寻优性能、在最小二乘支持向量机的参数优化实验中验证了其较高的寻优效率等.