暂无评论
数据挖掘中聚类的分析与研究,赵富,,聚类分析是数据挖掘中的一个重要研究领域。它将数据对象分组成为若干个类或簇,使得在同一个簇中的对象比较相似,而不同簇中的对
基于纹理的图像聚类主要分为纹理特征提取和聚类两个阶段。
如何通过颜色校正获得真实的颜色重现已成为图像处理中普遍存在的技术难点。首先对影响颜色失真的主要因素进行分析;然后讨论了一些有代表性的颜色校正方法及其改进机制,并进一步介绍了颜色校正在图像处理中的不同应
为了准确地实现点云数据的区域分割,将基于遗传算法的模糊聚类算法应用于逆向工程中的点云数据区域分割中。首先估算出法矢量、高斯曲率和平均曲率,并与坐标一起组成八维特征向量,用加权距离代替欧氏距离,然后通过
聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。
现有的可变区域拟合能量(RSF)模型基于初始轮廓内外灰度值的近似,较好地处理了图像分割中存在的图像灰度不均匀的问题。但当选择不恰当的初始轮廓时,由于RSF模型能量函数的非凸性质,极易陷入局部最小值。为
大田环境下小麦冠层图像具有光照不均匀、背景复杂及阴影遮挡等特点,经典图像分割算法存在精度低、过分割等问题,提出一种基于HSI空间下H分量的K均值聚类算法。使用[R G-B]归一化处理RGB空间下的彩色
在经典的融合空间信息的模糊聚类图像分割方法中,图像像素的空间信息大,都采用正方形的邻域窗来获取。为了更好地分割出图像中的边界及细节信息,对不同形状邻域空间信息的模糊聚类图像分割进行了研究。在该方法中,
为了提高彩色图像分割的效率,提出了一种彩色图像分割新方法。该方法首先利用均值漂移算法滤除噪声干扰并对图像进行初始分割,初始分割后的图像由一些互不相交的区域组成;然后将这些区域视为图的节点建立区域连接图
针对近邻传播(Affinity Propagation,AP)聚类算法存在运算复杂度高且未考虑数据点密度对聚类效果的影响的问题,提出一种改进的近邻传播聚类算法并应用于图像分割。首先,在度量数据点之间的
暂无评论