为解决矿井掘进工作面风流温度预测的问题,采用BP神经网络为模型,利用遗传算法优化网络初始权值和阈值,建立了一种新的掘进工作面风温预测模型,并用Matlab编程实现。通过分析影响掘进工作面风流温度的变化因素得出,局部通风机入口处湿球温度、风流温度,掘进工作面处湿球温度、掘进巷道长度等因素的影响力较大。为验证预测模型的准确性,分别对2个工作面的风温进行预测,结果表明,该模型收敛速度快、预测精确度高,是求解掘进工作面风温预测模型的最有效方法之一。