针对露天矿边坡稳定性问题的小样本、非线性等特点,利用遗传算法的全局搜索能力优势,提出了基于遗传算法的最小二乘支持向量回归参数寻优方法,并建立基于遗传最小二乘支持向量回归(GA-LSSVR)的露天矿边坡稳定性预测模型。通过遗传算法对LSSVR进行优化,提高了预测精度和速度。实验结果表明,与BP神经网络、LSSVR模型相比,GA-LSSVR的精度更高,基于GA-LSSVR的露天矿边坡稳定性预测模型更有效。