移动机器人的路径规划不仅要求路径路程短,还要避免路径转弯过多,颠簸程度严重,环境适应性差等问题,为此提出基于路径长度,转弯次数及坡度平滑性三种因素共同影响的改进启发函数,综合计算转移概率;同时改进信息素更新方式,根据三因素综合指标分配各路径上的信息素量,指导蚂蚁向综合性能最好的路径靠近。并提出一种非均匀初始信息素方法,防止过多蚂蚁走入死路。结合改进的地图建模障碍机制,提高路径的安全性。仿真及实验结果表明,改进算法得到的规划路径在三因素综合性能上具有较大提高,且具有较好的全局搜索能力及收敛性,适当调整参数还能得到某一特性表现突出的路径,且迭代次数和计算时间均表现较优。