通过改进基于节点相似度的朴素贝叶斯模型, 引入GN和CMN两种经典的划分社区算法挖掘网络社区属性对预测节点对的影响, 赋予共邻节点不同的连接度和社区贡献度并计算其贡献权重, 同时把模型应用于五种相似度算法, 采用ROC和Precision-Recall曲线进行实验评价。人工网络和真实网络中的实验证明, 该模型能够在深入挖掘社会网络结构信息的基础上提高预测的精确度, 同时为该类模型的研究提供一种新的方案。