暂无评论
传统的协同过滤推荐算法为目标用户推荐时,考虑了所有用户的历史反馈信息对物品相似度的影响,同时相似度的度量仅依靠用户评分信息矩阵,导致了推荐效果不佳。为解决上述问题,提出了基于用户谱聚类的Top-N协同
针对传统协同过滤算法存在冷启动、数据稀疏、运行效率低下等问题,分析了较传统协同过滤算法更加高效准确的SlopeOne算法的优点、原理及流程。针对SlopeOne算法未考虑用户兴趣变化和用户相似性这两方
针对物品流行偏置现象,将物品流行度引入到用户兴趣中建模,提出了基于物品流行度的用户兴趣特征相似度模型。针对传统模型没有考虑到用户兴趣稳定性和难以实时捕获用户兴趣问题,在计算用户兴趣相似度过程中引入时间
传统基于项目的协同过滤算法在计算项目之间相似度时只考虑历史项目的评分,而忽略了历史项目偏好对其的影响,以至于推荐精度不够理想。针对此问题,提出了一种融合注意力机制的深度电影推荐算法。根据得到的隐性反馈
为了解决用户评分数据稀疏性问题和传统相似性计算方法因严格匹配对象属性而产生的弊端,结合项目分类和云模型提出了一种改进的协同过滤推荐算法。首先,按项目分类得到类别矩阵;然后利用云模型计算类内项目间的相似
针对传统协同过滤算法稀疏矩阵和推荐精度不高的问题,根据一种社会心理学模型提出了基于群体动力学的协同过滤算法。该算法综合考虑了个体因素和环境因素对用户评分行为的影响,以此来调整传统的评分预测方法,然后为
一种基于标签改进的协同过滤推荐算法,刘金鑫,张成文,为解决传统协同过滤算法存在的数据稀疏性问题以及用户模型过于简单对推荐质量造成的负面影响,本文在传统协同过滤算法的基础上,��
最大频繁项集挖掘用于发现频繁地出现在数据集中的最大子集,目前已经有许多有效的算法。应用蚁群算法挖掘最大频繁项集是一种新的方法,但是该算法往往迭代次数多,提取率低。结合频繁项集关联图和最大最小蚂蚁系统,
基于协同过滤算法的个性化推荐技术的研究
基于协同过滤算法的改进论文,当前许多推荐系统都应用协同过滤算法。
暂无评论