暂无评论
针对传统粒子群优化算法易陷入局部极值点的问题,将混沌运动的遍历性,随机性以及初值敏感性等特点融入粒子群优化过程中,并通过模拟退火的方法对参数实现局部优化,使得粒子群优化算法的参数随着优化算法的进行不断
标准的粒子群算法在进化后期常易于陷入局部最优。为提高粒子群算法的寻优性能,首先对学生学习-考试机制进行分析,得到学习-考试机制的基本原则,然后,利用该原则和粒子局部最优的信息,在粒子陷入局部最优时,对
首先对传统的模拟退火算法进行改进,然后由独立变量分析方法对纯相位复波的数字全息图进行零级项消除,得到其共轭项,获取未解压的共轭复波相位,最后利用改进的模拟退火算法对未解压的共轭复波相位进行了相位恢复。
针对最近提出的具有极强全局搜索能力的加速粒子群算法,为改善早熟收敛问题并提高收敛精度,提出一种融合混沌理论的混沌增强加速粒子群算法。该算法引入混沌序列来调节全局学习因子,使算法进一步增加全局搜索能力。
针对粒子群优化算法易陷入局部极值的缺点,提出一种改进粒子群算法,该算法借鉴贪婪算法的思想初始化种群,利用两个种群同时寻优,并将遗传算法中交叉和变异操作引入其中,实现种群间的信息共享。用14点TSP标准
论文研究-量子连续粒子群优化算法及其应用.pdf,
基于遗传优化支持向量机的软件缺陷预测模型,王男帅,薛静锋,有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(supportvectormachine,SVM)具有非线性运算能
软件可靠性预测在软件开发的早期就能预测出哪些模块有出错倾向。提出一种改进的支持向量机来进行软件可靠性预测。针对支持向量机参数难选择的问题,将遗传算法引入到支持向量机的参数选择中,构造基于遗传算法优化支
提出在支持向量机回归预测中采用粒子群算法优化参数和主成分析降维的方法,通过算例分析表明,此法能够显著提高预测的精度。
针对多目标粒子群算法在高维条件下易早熟、迭代步骤数较多的问题,通过引入多点速度向量,提出一种基于多点速度向量的多目标粒子群改进算法,由于改进的多目标粒子群可以看成多个对于目标函数和当前种群的多目标最优
暂无评论