针对抄纸过程中纸机系统大滞后、非线性、时变且纸张的水分与定量之间存在严重耦合的问题,提出一种基于改进DRNN神经网络辨识的PID解耦控制器。该控制器利用改进DRNN对定量与水分参数的Jacobian信息辨识结果,自适应调整PID控制器的各项比例系数。仿真结果表明水分与定量之间相互影响很小,能较好实现对象的解耦控制,且适应能力强。实际运行结果表明,该算法的投入提高了控制精度,具有较强的鲁棒性。