在构造决策树的过程中,分裂属性选择的标准直接影响分类的效果。分析了现有改进的ID3算法不同程度地存在学习效率偏低和对多值属性重要性的主观评测等问题,提出一种高效而且可靠的基于灰色关联度的决策树改进算法。该算法通过灰色关联分析建立各特征属性与类别属性之间的关系,进而利用灰色关联度来修正取值较多但非重要属性的信息增益。通过实验与其它ID3改进算法进行了比较,验证了改进后的算法是有效的。