与Dempster-Shafter理论(DST)相比,Dezert-Smarandache理论(DSmT)通过保留证据冲突项作为数据融合的焦元,从而可以很好地解决在证据发生高冲突情况下的信息融合问题。但是因为DSmT算法增加了矛盾焦元,致使推理过程中的计算量加大,更容易产生焦元爆炸的问题。针对上述问题,提出一种结合两者优点的DST-DSmT智能算法。该算法以证据之间的冲突质量作为判断依据,当冲突质量较小时采用DST算法,反之则采用DSmT算法,以期在保证融合效果的情况下,减小计算量。以P2-DX机器人为实验平台,以具体算例验证了方法的正确性和有效性。