暂无评论
【摘要】 W.eb2.0技术将互联网带入了一个崭新的时代,互联网用户在互联网生活中发挥着越来越主动的作用,用户不再只是被动地从互联网上接受信息,而是主动地创造信息,并利用Web2.0平台与其他用户进行
现有的基于近邻的协同过滤推荐方法如基于KNN、基于K-means的协同过滤推荐常用来预测用户评分,但该方法确定邻居个数K非常困难且推荐准确率不高,难以达到理想推荐效果。从选择邻居用户这一角度出发,提出
最大频繁项集挖掘用于发现频繁地出现在数据集中的最大子集,目前已经有许多有效的算法。应用蚁群算法挖掘最大频繁项集是一种新的方法,但是该算法往往迭代次数多,提取率低。结合频繁项集关联图和最大最小蚂蚁系统,
针对受限波尔茨曼机用于协同过滤算法存在的不足,忽略了用户兴趣随时间变化,同时只利用了严重稀疏的用户评分数据,首先提出一种融合了时间信息的用户RBM模型:TimeRBM模型,即在原有RBM模型中加入时间
由于传统的协同过滤推荐算法存在很多缺陷,如数据稀疏性、冷启动、低推荐精度等,提出了一种基于模糊聚类和改进混合蛙跳的协同过滤推荐算法。首先利用一种构造的基于时间的指数遗忘函数对原始评分数据进行处理;然后
基于用户的协同过滤和基于内容的混合推荐系统源代码.基于内容的推荐算法的具体实现+基于用户的协同过滤算法的具体实现网上下载的,使用python语言来进行编写
协同过滤是目前推荐系统中最为成功的一种方法,但面临稀疏数据特征时存在冷启动、稀疏性、可扩展性等问题。提出利用Web数据挖掘(WUM)获取隐性数据对显性用户评价矩阵进行补值,应用径向基函数(RBFN)对
基于物品属性聚类的融合协同过滤算法,梁佳男,张华,随着信息技术的发展,各式各样的推荐系统早已广泛地应用在电子商务、新闻推荐等领域。协同过滤可以算是推荐系统众多推荐算法中,
基于联合聚类的优化协同过滤推荐算法,袁凌,郭明,随着网络信息的急剧增长,用户需要花费更多时间浏览和找寻自己感兴趣的信息。协同过滤技术是一种基于用户显性评分行为的个性化推
针对传统协同过滤在推荐过程中存在的稀疏性、扩展性以及个性化问题,通过引入算法集成的思想,旨在优化和改进一种新型的基于Spark平台下的混合协同过滤。借鉴Stacking集成学习思想,将多个弱推荐器线性
暂无评论