在人脸识别中,传统有效的鉴别分析方法需要更多样本评估类内散度信息。由于人脸的单样本问题,导致某些经典的方法如Fisherface和Eigenface等失效,解决的方法通常是生成各种虚拟样本来扩充训练集以实施这些算法。针对这个问题,根据人脸的对称相似理论,人脸样本的相关变化信息可以从它的对称脸上提取,提出组合原始训练样本及它的虚拟平均脸、对称脸作为训练样本集,应用稀疏理论进行加权积分融合,分两步进行识别的方法,并在ORL和FERET人脸数据库做了对比实验。实验结果表明,该方法比现有一些突出效果人脸识别方法更好,并具有一定的鲁棒性。