针对故障诊断面临的故障样本少、非线性强、多故障处理等问题以及传统智能诊断方法存在的不足,提出了一种基于决策树(DT)和相关向量机(RVM)的智能故障诊断方法。通过构造决策二叉树,将多类分类问题分解成多个二类分类问题;在各个决策节点,利用RVM进行二类分类,从而实现RVM的多类分类。理论分析及仿真结果表明,相比支持向量机,新方法在保持高诊断正确率的同时具有更高的稀疏性和诊断效率,并且能够提供概率式输出,更具实用价值;相比OAR-RVM和OAO-RVM方法,新方法节省了训练时间,具有更高的训练效率。