为了提高中文文本情感识别的精度, 从集成学习的角度出发, 提出了一种基于样本空间动态划分的机制构建文本情感分类器。该算法充分利用训练样本空间内的鉴别信息, 通过引入核平滑方法对样本空间进行自适应划分, 形成若干个具有差异性的多粒度样本子集, 然后分别在每个子集上构造基分类器, 最后将所有基分类器的输出进行融合以产生最终的预测结果。实验结果表明, 该算法在查准率和查全率等方面均优于Bagging、AdaBoost等算法, 并且在大规模样本集的情感识别中具有良好的应用前景。