暂无评论
为了提高语音识别系统性能,研究提出将自编码器深度学习神经网络应用于语音识别中。该网络结构引入贪婪逐层预训练学习算法,通过预训练和微调两个步骤提取出待识别语音信号的本质特征,克服传统多层人工神经网络模型
论文研究-基于灰色预测与模式识别的企业危机预警模型研究.pdf, 针对当前大部分企业危机预警模型只能报警,不能预测的现状,
综述了当前基于Kinect手势跟踪的几种代表性方法:基于轮廓和特征匹配运动目标跟踪算法、均值漂移跟踪算法、连续自适应均值漂移跟踪算法、卡尔曼滤波跟踪算法以及粒子滤波跟踪算法,分析其特点及相互关系,详细
提出一种新的人体行为识别特征提取方法。针对Radon变换对缩放敏感的问题,采用改进的Radon变换提取运动人体区域最小外接矩形的Radon变换特征,并采用隐马尔可夫模型进行行为识别。该方法提取特征时不
针对将JavaScript代码N-gram处理后识别算法特征维度较高的问题,提出一种高效的降维方法。该方法利用TF-IDF-like模型分别计算特征在正常样本和恶意样本中的权重,基于特征权重在两类样本
提出了基于模糊矩阵的数据聚类模型,其中引入了聚类过程的全局性控制模糊矩阵,描述了数据聚类的过程;提出了基于模糊矩阵的蚁群聚类算法,实验结果证明了算法的正确性和高效性。
综合阐述了语音识别技术的提出与发展历史,语音识别系统的分类,目前所面临的困难和采用的主要技术,以及 发展方向和应用前景
介绍了很多手势识别的新进展和动态,关于神经网络在手势势必中的应用
手势识别,基于 MATLAB。 提取了一种手势识别的算法,通过皮肤颜色模型将手势分割出来,然后追踪其边缘,再通过傅里叶系统作为特征向量进行识别。识别率很高的。 手势
提取手部轮廓特征,k-means聚类算法,训练得到手势识别模型,然后用测试数据测试。
暂无评论