论文研究 SF CNN在驾驶行为识别中的应用研究.pdf
为了减少不良驾驶行为的潜在危险,通过智能手机内置传感器对驾驶行为进行实时监测,辅助驾驶者安全驾驶,提出了一种优化特征分布的无监督特征学习算法模型——稀疏滤波-卷积神经网络模型(Sparse Filter-Convolutional Neural Network,SF-CNN)。该方法利用移动终端在车辆行驶中采集的三轴加速度数据,通过稀疏滤波进行范数联合约束,得到紧凑的初级特征表达,将该表达矩阵作为卷积神经网络首层的输入,进行非线性分类来识别驾驶行为。实验结果表明,稀疏滤波-神经网络的识别模型对驾驶行为具有更高的识别率和鲁棒性,优于传统神经网络模型,对辅助驾驶系统的效能评价有重要的理论意义。
暂无评论