论文研究 孤立点检测改进径向基神经网络动态预测模型.pdf
提出一种基于凝聚层次聚类消除孤立点的新方法,借助聚类树识别孤立点。去除孤立点后,利用RBF网络建立动态预测模型,实验结果表明,网络的训练和泛化性能较消除孤立点前有明显提高。说明凝聚层次聚类方法用在孤立点检测方面是有效可行的,消除孤立点后建立的模型收敛速度快,泛化能力更优。
提出一种基于凝聚层次聚类消除孤立点的新方法,借助聚类树识别孤立点。去除孤立点后,利用RBF网络建立动态预测模型,实验结果表明,网络的训练和泛化性能较消除孤立点前有明显提高。说明凝聚层次聚类方法用在孤立点检测方面是有效可行的,消除孤立点后建立的模型收敛速度快,泛化能力更优。