为了有效地从物联网移动设备的数字信息中挖掘出用户在日常行为中的轨迹异常,针对现有用户异常轨迹检测算法效率低的问题,提出了一种双层聚类的用户轨迹异常检测方法。考虑到移动终端设备中的轨迹信息数据量大、分布不均匀等特点,该方法在特定的空间距离与时间间隔下提取出停留点集合,并对这些点进行层次聚类,根据结果划分出停留区域,进而发现其中的异常停留区域;最后,对停留区域之间发生的运动轨迹段进行二次层次聚类,发现异常轨迹段。实验结果表明,提出的方法在发现异常轨迹时,相较于传统的算法,既全面地检测出异常轨迹,又加快了异常检测的速度。