系统地研究了查询词与候选人在文档中的距离和顺序关系对专家搜索算法准确率的影响。首先在概率语言模型的框架下提出了顺序核函数来建模顺序关系证据;然后进一步提出两种对不同关系证据进行统一建模的概率框架,并通过在TREC标准数据集上的对比实验,探索了结合两种关系证据进行专家搜索的可行性。实验结果表明,距离和顺序关系证据对专家搜索系统的准确率提高能力相近,而对它们的适当结合可以获得比单独利用其中任何一种更好的效果。