通过对关联规则挖掘技术及经典算法Apriori和FP-growth的研究和分析,提出了一种改进的频繁项集挖掘算法。该算法利用矩阵存储数据,并结合矩阵运算求项集的支持数,有效减少了事务数据库的扫描次数;利用有序频繁项目邻接矩阵创建频繁模式树,有效减少了频繁模式树的分支和层数。通过实例分析了频繁项集的挖掘过程。