通过对高速公路宏观动态交通流模型的分析,针对高速公路交通系统的非线性时变特点,应用BP神经网络建立了高速公路宏观动态交通流模型。并利用一段高速公路的交通流数据对BP神经网络进行训练,得到网络参数。最后,为了验证BP网络模型的有效性,在MATLAB环境中对模型进行了仿真,并将仿真结果与原始模型的结果进行了比较。结果表明,该方法能较准确地描述高速公路交通流的真实行为,并且能够适应交通状况的变化。