低透煤层井下长钻孔水力压裂增透技术
用户评论
推荐下载
-
高压脉动水力压裂增透技术在长平公司的应用研究
为了研究高压脉动水力压裂对单一低透煤层卸压增透的影响,提高抽采效果,以晋煤集团长平矿4306工作面为试验点,压裂前后瓦斯抽放效果的变化表明,高压脉动水力压裂增透技术比普通水力压力增透效果更加明显,显著
14 2020-07-16 -
深部煤层单段多段水力压裂增透效果对比
为对比深部煤层钻孔内单段和多段水力压裂增透效果,基于谢桥煤矿待揭8煤层赋存条件,分别建立了单段和多段水力压裂增透模型,运用RFPA2D-Flow软件,模拟分析了水力压裂影响区内煤层水压场、应力场、裂隙
18 2020-05-02 -
深部低透煤层水力割缝卸压增透技术研究现状及发展趋势
中国煤矿煤层的渗透率普遍较低,瓦斯抽采难度高、抽采率低、抽采达标工程量大,深部高应力条件下瓦斯抽采难度更大。煤层卸压增透是深部低透气性煤层瓦斯灾害防治与煤层气高效开发的关键,而水射流割缝技术是煤层卸压
27 2020-07-16 -
高压脉动水力压裂增透技术在长平公司的应用研究
为了研究高压脉动水力压裂对单一低透煤层卸压增透的影响,提高抽采效果,以晋煤集团长平矿4306工作面为试验点,压裂前后瓦斯抽放效果的变化表明,高压脉动水力压裂增透技术比普通水力压力增透效果更加明显,显著
6 2020-07-16 -
碎软煤层井下多点定向长钻孔水力压裂技术
针对低透气性碎软煤层普遍存在的瓦斯抽采效果差的技术问题,研究了多点定向长钻孔水力压裂高效瓦斯抽采技术,探讨了碎软低透气性煤层的水力压裂增透机理;在施工多点定向长钻孔、井下水力压裂快速封孔装备的基础上,
30 2020-07-16 -
气相压裂低渗难抽煤层瓦斯增透效果检验
介绍了针对低渗难抽采煤层的增透强抽新型二氧化碳气相压裂技术,并通过现场试验测试了原始煤层与实施气相压裂后煤层透气性系数与钻孔瓦斯衰减系数的变化。通过数据分析表明,气相压裂技术能显著增加钻孔周围煤层有效
22 2020-07-16 -
急倾斜低透煤层水力压裂瓦斯及水分富集特征
为研究急倾斜低透气煤层水力压裂后影响区域内的瓦斯及水分富集特征,开展了急倾斜煤层底板水力压裂工业性试验,实测分析了压裂影响区域不同位置处瓦斯含量与水分,得到了瓦斯及水分富集特征。结果表明,水力压裂对瓦
16 2020-07-16 -
低渗透煤层钙基材料静态压裂增透技术实验研究
增加低渗透煤层透气性是防治矿井瓦斯灾害、提高煤层气资源的开采的关键技术之一。简要分析了静态爆破剂压裂理论与破碎机理,以氧化钙、萘系减水剂、缓凝剂等材料配置新型静态爆破剂,通过正交试验确定最佳配比,并对
9 2020-07-17 -
顶板岩石长钻孔水力压裂增透抽采技术工程实践
阳煤集团新元公司3号煤层属碎软低渗煤层,煤层瓦斯含量高、透气性差,抽采效果不理想,瓦斯抽采时间长,导致煤巷单进水平低,严重制约了矿井生产衔接。通过实施顶板岩石长钻孔水力压裂增透技术实现了对碎软煤层的高
18 2020-07-17 -
水力压裂增透技术在鱼田堡煤矿低透气性突出煤层中的试验研究
为解决鱼田堡煤矿煤层透气性差,单一穿层钻孔、水力割缝等工艺后抽采效果不理想,区域防突措施实施不到位,造成较大空白带问题,在34区-350 m西抽对5~#煤层进行高压水力压裂增透技术试验。通过现场试验确
19 2020-07-18 -
王庄煤矿煤层脉动水力卸压增透技术实践
为了增加540胶带运输大巷煤层的透气性、提升本煤层钻孔瓦斯抽采效果,降低煤与瓦斯突出危险性,王庄煤矿提出采用脉动水力卸压技术提高煤层透气性,通过对煤层施加脉动变化信号的水压,实现煤层原有微裂隙的扩展。
20 2020-07-18 -
深埋低透煤层定向水力压裂瓦斯抽采钻孔布置参数研究
为了优化深埋、低透煤层定向水力压裂瓦斯抽采钻孔布置参数、降低钻孔施工的成本和提高瓦斯抽采率,采用了RFPA2D-Flow软件数值模拟、AE声发射、定向水力压裂区域钻孔监测及压裂前后抽采率对比分析,最终
20 2020-07-19 -
水力压裂技术在无保护层低渗透率单一煤层增透中的应用
水力压裂是目前最有效的增加煤层透气性的方法之一。本文应用该法在无保护层的透气性较差的单一煤层中进行了穿层钻孔压裂试验,证明可有效增加煤层透气性,提高单孔瓦斯浓度和瓦斯抽采量,对于同类型的的矿井煤层增透
11 2020-07-22 -
煤矿井下控制水力压裂煤层增透关键技术及应用
为了减少低透气性煤层瓦斯抽采钻孔工程量和提高瓦斯抽采效率,对低透气性煤层增透理论及技术应用进行了研究,基于煤层控制水力压裂概念,开发了煤矿井下水力压裂数值模拟与优化设计软件,提出了高承压上向孔和近水平
16 2020-07-23 -
煤层CO2与水力交替充装压裂增透技术
为了提高煤层透气性系数,采用CO2气与水力交替充装压裂技术,来增加煤层的透气性系数。分析CO2与水在交替充装下,CO2、水体和煤体三者相互作用的过程对于煤体产生的疲劳损伤机理,以及CO2对于吸附煤体中
12 2020-12-23
暂无评论